Androgen receptor-mediated non-genomic regulation of prostate cancer cell proliferation
نویسندگان
چکیده
Androgen receptor (AR)-mediated signaling is necessary for prostate cancer cell proliferation and an important target for therapeutic drug development. Canonically, AR signals through a genomic or transcriptional pathway, involving the translocation of androgen-bound AR to the nucleus, its binding to cognate androgen response elements on promoter, with ensuing modulation of target gene expression, leading to cell proliferation. However, prostate cancer cells can show dose-dependent proliferation responses to androgen within minutes, without the need for genomic AR signaling. This proliferation response known as the non-genomic AR signaling is mediated by cytoplasmic AR, which facilitates the activation of kinase-signaling cascades, including the Ras-Raf-1, phosphatidyl-inositol 3-kinase (PI3K)/Akt and protein kinase C (PKC), which in turn converge on mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) activation, leading to cell proliferation. Further, since activated ERK may also phosphorylate AR and its coactivators, the non-genomic AR signaling may enhance AR genomic activity. Non-genomic AR signaling may occur in an ERK-independent manner, via activation of mammalian target of rapamycin (mTOR) pathway, or modulation of intracellular Ca(2+) concentration through plasma membrane G protein-coupled receptors (GPCRs). These data suggest that therapeutic strategies aimed at preventing AR nuclear translocation and genomic AR signaling alone may not completely abrogate AR signaling. Thus, elucidation of mechanisms that underlie non-genomic AR signaling may identify potential mechanisms of resistance to current anti-androgens and help developing novel therapies that abolish all AR signaling in prostate cancer.
منابع مشابه
Benzyldihydroxyoctenone, a novel nonsteroidal antiandrogen, shows differential apoptotic induction in prostate cancer cells in response to their androgen responsiveness.
The molecular mechanisms of apoptotic induction by benzyldihydroxyoctenone (BDH), a nonsteroidal antiandrogen, isolated from the culture broth of Streptomyces sp., have been previously published in prostate cancer LNCaP cells. Apoptotic induction of BDH-treated LNCaP cells was associated with downregulation of Bcl-xL that caused, in turn, cytochrome c release from mitochondria, and activation o...
متن کاملAndrogen Signalling in the Prostate Cancer Microenvironment
....................................................................................................................... 73 INTRODUCTION ............................................................................................................. 75 RESULTS ........................................................................................................................... 78 DISCUSSION .....
متن کاملTRPM8 channel as a novel molecular target in androgen-regulated prostate cancer cells
The cold and menthol receptor TRPM8 is highly expressed in prostate and prostate cancer (PC). Recently, we identified that TRPM8 is as an ionotropic testosterone receptor. The TRPM8 mRNA is expressed in early prostate tumors with high androgen levels, while anti-androgen therapy greatly reduces its expression. Here, from the chromatin-immunoprecipitation (ChIP) analysis, we found that an androg...
متن کاملRepression of cell proliferation and androgen receptor activity in prostate cancer cells by 2'-hydroxyflavanone.
BACKGROUND Prevention of the development of castration-resistant from hormone-naïve prostate cancer is an important issue in maintaining the quality of life of the patients. We explored the effect of 2'-hydroxyflavanone on proliferation and androgen responsiveness using prostate cancer cell lines. MATERIALS AND METHODS To investigate the effect of 2'-hydroxyflavanone on proliferation, prostat...
متن کاملTITLE: GKLF as a Novel Target in Selenium Chemoprevention of Prostate Cancer
Our previous report showed that methylseleninic acid (MSA) significantly decreases the expression of androgen receptor and prostate-specific antigen (PSA) in LNCaP cells. The present study extended the above observations by showing the universality of this phenomenon and that the inhibitory effect of MSA on prostate cancer cell growth and cancer-specific biomarkers is mediated through androgen ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2 شماره
صفحات -
تاریخ انتشار 2013